How do you solve #7x-1=9+2x#?

1 Answer
Feb 14, 2016

#color(green)(x=2#

Explanation:

#color(blue)(7x-1=9+2x#

Remember the golden rule of Algebra-what we do in one side must be done in the other side also.

Add #1# both sides:

#rarr7x-1+1=9+2x+1#

#rarr7x=10+2x#

Subtract #2x# both sides:

#rarr7x-2x=10+2x-2x#

#rarr5x=10#

Divide both sides by #5#:

#rarr(5x)/5=10/5#

#rarr(cancel5x)/cancel5=10/5#

#rArrcolor(green)(x=2#

Check:

Substitute the value of #x# into the equation:

#|->color(brown)(7(2)-1=9+2(2)#

#|->color(brown)(14-1=9+4#

#|->color(orange)(13=13# :)

So,it is true!