How do you solve #7x^2 - 12x + 16 = 0 #?
1 Answer
Explanation:
The given quadratic equation:
#7x^2-12x+16 = 0#
is in the form:
#ax^2+bx+c = 0#
with
This has discriminant
#Delta = b^2 - 4ac = (-12)^2-4(7)(16) = 144-448 = -304#
Since
We can still find the roots by completing the square.
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
We use this with
#0 = 7(7x^2-12x+16)#
#color(white)(0) = 49x^2-84x+112#
#color(white)(0) = 49x^2-84x+36+76#
#color(white)(0) = (7x)^2-2(7x)(6)+(6)^2+(2sqrt(19))^2#
#color(white)(0) = (7x-6)^2-(2sqrt(19)i)^2#
#color(white)(0) = ((7x-6)-2sqrt(19)i)((7x-6)+2sqrt(19)i)#
#color(white)(0) = (7x-6-2sqrt(19)i)(7x-6+2sqrt(19)i)#
Hence:
#x = 1/7(6+-2sqrt(19)i) = 6/7+-2/7sqrt(19)i#