How do you solve 8x^2 + 14x + 5 = 0 by completing the square?

3 Answers
May 8, 2018

x=-5/4" or "x=-1/2

Explanation:

"using the method of "color(blue)"completing the square"

• " the coefficient of the "x^2" term must be 1"

"factor out 8"

rArr8(x^2+7/4x+5/8)=0

• "add/subtract "(1/2"coefficient of the x-term")^2" to"
x^2+7/4x

8(x^2+2(7/8)xcolor(red)(+49/64)color(red)(-49/64)+5/8)=0

rArr8(x+7/8)^2+8(-49/64+5/8)=0

rArr8(x+7/8)^2-9/8=0

rArr8(x+7/8)^2=9/8

"divide both sides by 8"

rArr(x+7/8)^2=9/64

color(blue)"take the square root of both sides"

sqrt((x+7/8)^2)=+-sqrt(9/64)larrcolor(blue)"note plus or minus"

rArrx+7/8=+-3/8

"subtract "7/8" from both sides"

rArrx=-7/8+-3/8

rArrx=-7/8-3/8=-10/8=-5/4

"or "x=-7/8+3/8=-4/8=-1/2

May 8, 2018

x= -10/8=-5/4
x=-4/8=-1/2

Explanation:

Given: color(green)(y=0=8x^2+14x+5)

Write as:
color(green)(0=8(x^2+14/8x)+5 color(white)("ddd")->color(white)("ddd")0=8(x^2+7/4x)+5)

The 'perfect' square related to x^2+7/4x " is " (x+7/8)^2

but 8(x+7/8)^2 introduces the value of color(red)(8xx(7/8)^2) that is not in the original equation. We put it in so we have to take it out.

color(green)(0=8(x^2+7/4x)+5 )

color(green)(0= 8(x+7/8)^2color(red)(-[8xx(7/8)^2 ] )+5 )

color(green)(0=8(x+7/8)^2-9/8 )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Check")

8(x+7/8)^2-9/8
8(x^2+7/4x +49/64)-9/8

8x^2+14x+49/8-9/8

8x^2+14x +40/8

8x^2+14x+5 as required!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)(0=8(x+7/8)^2-9/8color(white)("dd") ->color(white)("dd")+9/8=8(x+7/8)^2

color(green)( color(white)("ddddddddddddddddddd")->color(white)("dddd") 9/64=(x+7/8)^2)

color(green)(color(white)("ddddddddddddddddddd")->color(white)("d.d")+-3/8=color(white)("d")x+7/8)

color(green)(color(white)("ddddddddddddddddddd")->color(white)("ddd.dd")x=-7/8+-3/8)

x= -10/8=-5/4
x=-4/8=-1/2

Tony B

May 8, 2018

x=-1/2 or x=-5/4

Explanation:

We have,

8x^2+14x+5=0

=>8x^2+14x=-5

=>8x^2+14x+K=K-5...to(A)

Now we have to find K,such that, (8x^2+14x+K)is a square.

Here,

I^(st)term=8x^2

II^(nd) term=14x

III^(rd)term=K

Formula for color(red)(III^(rd)term=(II^(nd)term)^2/(4xxI^(st)term)...to(psi)

i.e. K=(14x)^2/(4xx8x^2)=(196x^2)/(32x^2)=49/8

So,from(A),we get

8x^2+14x+49/8=49/8-5

(sqrt8x)^2+2(sqrt8x)(7/sqrt8)+(7/sqrt8)^2=9/8

(sqrt8x+7/sqrt8)^2=(3/sqrt8)^2

=>sqrt8x+7/sqrt8=+-3/sqrt8

=>8x+7=+-3

=>8x+7=3 or 8x+7=-3

=>8x=3-7 or 8x=-3-7

=>8x=-4 or 8x=-10

=>x=-1/2 or x=-5/4

=>x=-0.5 or x=-1.25

Note: Formula color(red)((psi) for color(red)(III^(rd)term, is always true.