How do you solve 9=x+x^29=x+x2?

1 Answer
Jun 9, 2018

x= (-1+-sqrt(37))/2x=1±372

Explanation:

9=x+x^29=x+x2

You can complete the square:

ax^2+bx+cax2+bx+c

a must equal 1

c=(b/2)^2c=(b2)2

square term =b/2=b2

x^2+x = 9x2+x=9

a=1a=1 so we can proceed.

c=(1/2)^2=1/4c=(12)2=14

x^2+x +c = 9+cx2+x+c=9+c

x^2+x +1/4 = 9+1/4x2+x+14=9+14

factor the left side:

(x+1/2)(x+1/2) = 9+1/4(x+12)(x+12)=9+14

(x+1/2)^2 = 37/4(x+12)2=374

now solve:

sqrt((x+1/2)^2) = +-sqrt(37/4)(x+12)2=±374

x+1/2= +-sqrt(37/4)x+12=±374

x= -1/2+-sqrt(37)/2x=12±372

x= (-1+-sqrt(37))/2x=1±372

graph{x^2+x -9 [-20, 20, -10, 10]}