How do you solve abs((2x-5)/3)=abs((3x+4)/2)?

1 Answer
Nov 9, 2017

x=-22/5

Explanation:

abs[(2x-5)/3]=abs[(3x+4)/2]

After squaring both sides,

(2x-5)^2/9=(3x+4)^2/4

(4x^2-20x+25)/9=(9x^2+24x+16)/4

4*(4x^2-20x+25)=9*(9x^2+24x+16)

16x^2-80x+100=81x^2+216x+144

65x^2+296x+44=0

65x^2+276x+20x+44=0

13x*(5x+22)+4*(5x+22)=0

(13x+4)*(5x+22)=0

Hence x_1=-22/5 and x_2=-4/13. But x=-4/13 doesn't provide solution for original problem. Thus solution of it is x=-22/5