How do you solve #abs(t+1)=4t +3#?
2 Answers
Appliying definition of absolute value. See details
Explanation:
We define absolute value of a number as
With this in mind, lets aplly to our equation in t
In the first case (
In the second case (
Explanation:
#"the value inside the absolute value bars can be "#
#"positive or negative"#
#"thus there are 2 possible solutions"#
#t+1=4t+3larrcolor(blue)"positive inside bars"#
#"subtract "(t+1)" from both sides"#
#rArr0=3t+2#
#rArr3t=-2rArrt=-2/3larrcolor(red)"possible solution"#
#-t-1=4t+3larrcolor(blue)"negative inside bars"#
#rArr5t=-4rArrt=-4/5larrcolor(red)"possible solution "#
#color(blue)"As a check"#
#|-2/3+1|=|1/3|=1/3" and "-8/3+9/3=1/3#
#"both sides are equal hence "x=-2/3" is a solution"#
#|-4/5+1|=1/5" and "-16/5+15/5=-1/5#
#1/5!=-1/5" hence "t=-4/5" is not a solution"#