How do you solve abs(x + 1)=abs(-4 x + 3)|x+1|=|4x+3|?

1 Answer
May 25, 2018

The solutions are {(x=4/3),(x=2/5):}

Explanation:

The equation is

|x+1|=|-4x+3|

Removing one absolute value at a time :

|x+1|=-4x+3 and |x+1|=4x-3

The first equation gives

|x+1|=-4x+3

<=>, {(x+1=-4x+3),(-x-1=-4x+3):}

<=>, {(5x=2),(3x=4):}

<=>, {(x=2/5),(x=4/3):}

The second equation gives

|x+1|=4x-3

<=>, {(x+1=4x-3),(-x-1=4x-3):}

<=>, {(3x=4),(5x=2):}

<=>, {(x=4/3),(x=2/5):}

graph{(y-|x+1|)(y-|-4x+3|)=0 [-6.38, 7.67, -1.74, 5.283]}