How do you solve and find the value of #cos(cos^-1(2/9))#? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Barney V. Feb 7, 2017 #0.222222222# or #2/9# Explanation: #cos(cos^-1(2/9))# #:.=cos(arccos(0.222222222)# #:.=cos(77.16041159)rarr# decimals of a degree#rarr77°09'37.48''# #:.=0.222222222rarr 2/9# Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate #tan(arcsin (0.31))#? What is #\sin ( sin^{-1} frac{sqrt{2}}{2})#? How do you find the exact value of #\cos(tan^{-1}sqrt{3})#? How do you evaluate #\sec^{-1} \sqrt{2} #? How do you find #cos( cot^{-1} sqrt{3} )# without a calculator? How do you rewrite #sec^2 (tan^{-1} x)# in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate #sin^-1(0.1)#? How do you solve the inverse trig function #cos^-1 (-sqrt2/2)#? How do you solve the inverse trig function #sin(sin^-1 (1/3))#? See all questions in Inverse Trigonometric Properties Impact of this question 7066 views around the world You can reuse this answer Creative Commons License