How do you solve and find the value of cos(cos^-1(2/9))cos(cos−1(29))? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Barney V. Feb 7, 2017 0.2222222220.222222222 or 2/929 Explanation: cos(cos^-1(2/9))cos(cos−1(29)) :.=cos(arccos(0.222222222) :.=cos(77.16041159)rarr decimals of a degreerarr77°09'37.48'' :.=0.222222222rarr 2/9 Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})? How do you find the exact value of \cos(tan^{-1}sqrt{3})? How do you evaluate \sec^{-1} \sqrt{2} ? How do you find cos( cot^{-1} sqrt{3} ) without a calculator? How do you rewrite sec^2 (tan^{-1} x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)? How do you solve the inverse trig function sin(sin^-1 (1/3))? See all questions in Inverse Trigonometric Properties Impact of this question 7288 views around the world You can reuse this answer Creative Commons License