How do you solve and find the value of sin(cos^-1(3/4))sin(cos1(34))?

1 Answer
Mar 2, 2017

sqrt7/4.74.

Explanation:

Let, cos^-1(3/4)=theta.cos1(34)=θ.

Knowing that, cos^-1 x=theta iff x=costheta, theta in [0,pi],cos1x=θx=cosθ,θ[0,π], we get,

costheta=3/4, and, 0 le theta le pi.cosθ=34,and,0θπ.

But costheta >0 rArr theta !in [pi/2,pi] rArr 0 le theta le pi/2.cosθ>0θ[π2,π]0θπ2.

:. sintheta=+-sqrt(1-cos^2theta)=+-sqrt(1-9/16)=+-(sqrt7)/4.

0 le theta le pi/2 rArr sin theta gt 0 rArr sin theta=+sqrt7/4.

:. sin (cos^-1(3/4))=sintheta=sqrt7/4.

Enjoy Maths.!