x^3>2x^2+xx3>2x2+x
x^3-2x^2-x>0x3−2x2−x>0
x(x^2-2x-1)>0x(x2−2x−1)>0
Solve x^2-2x-1x2−2x−1 using the quadratic formula
x = (-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
x = (2+-sqrt(4-4(1)(-1)))/(2)x=2±√4−4(1)(−1)2
x = (2+-sqrt8)/2x=2±√82
x=(2+-2sqrt2)/2x=2±2√22
x=1+-sqrt2x=1±√2
So:
x(x^2-2x-1)>0x(x2−2x−1)>0
x(x-(1+sqrt2))(x-(1-sqrt2))=0x(x−(1+√2))(x−(1−√2))=0 is the graph below
graph{x(x-(1+sqrt2))(x-(1-sqrt2)) [-10, 10, -5, 5]}
x(x-(1+sqrt2))(x-(1-sqrt2))>0x(x−(1+√2))(x−(1−√2))>0 means that you need to find the parts of the graph that is above the line y=0y=0
Therefore, the answers are: 1-sqrt2 < x <01−√2<x<0 and x>1+sqrt2x>1+√2