How do you solve Arcsin(x)+arctan(x) = 0?

1 Answer
Apr 7, 2018

x = 0x=0

Explanation:

We have:

arcsinx = -arctanxarcsinx=arctanx

sinx = -tanxsinx=tanx

sinx + sinx/cosx = 0sinx+sinxcosx=0

(sinxcosx+ sinx)/cosx = 0sinxcosx+sinxcosx=0

sinxcosx + sinx = 0sinxcosx+sinx=0

sinx(cosx + 1) = 0sinx(cosx+1)=0

sinx = 0 or cosx = -1sinx=0orcosx=1

x = 0, pix=0,π

Since the domain of arcsinxarcsinx is -1 ≤ x ≤ 11x1, the only admissible solution is x= 0x=0. The graph confirms:

enter image source here

Hopefully this helps!