How do you solve e^(0.6x-5)+9=18e0.6x5+9=18?

1 Answer
Sep 16, 2016

I got x=12x=12

Explanation:

We can first take the 99 to the right:
e^(0.6x-5)=18-9e0.6x5=189
e^(0.6x-5)=9e0.6x5=9

we then take the natural log, lnln of both sides:
ln[e^(0.6x-5)]=ln(9)ln[e0.6x5]=ln(9)

On the left the lnln and the exponential cancel each other and we end up with:

0.6x-5=ln(9)0.6x5=ln(9)

rearrange to isolate xx:

x=(ln(9)+5)/0.6=11.99~~12x=ln(9)+50.6=11.9912