How do you solve for nn in P(n,4)=30[C(n-1, 3)]P(n,4)=30[C(n1,3)]?

1 Answer

n=5n=5

Explanation:

To solve this, we need to first know the general formulas for permutations and combinations:

P_(n,k)=(n!)/((n-k)!); n="population", k="picks"Pn,k=n!(nk)!;n=population,k=picks

C_(n,k)=(n!)/((k)!(n-k)!)Cn,k=n!(k)!(nk)! with n="population", k="picks"n=population,k=picks

So let's set them equal to each other and insert what we know:

P_(n,4)=30(C_(n-1,3))Pn,4=30(Cn1,3)

(n!)/((n-4)!)=(30(n-1)!)/((3)!((n-1)-3)!)n!(n4)!=30(n1)!(3)!((n1)3)!

We can combine terms in the right hand side denominator:

(n!)/((n-4)!)=(30(n-1)!)/((3)!(n-4)!)n!(n4)!=30(n1)!(3)!(n4)!

We can now multiply the left side top and bottom by 3!3! to have our denominators match:

(n!)/((n-4)!)((3!)/(3!))=(30(n-1)!)/((3)!(n-4)!)n!(n4)!(3!3!)=30(n1)!(3)!(n4)!

(3!n!)/(3!(n-4)!)=(30(n-1)!)/((3)!(n-4)!)3!n!3!(n4)!=30(n1)!(3)!(n4)!

With the denominators the same, we can multiply through by it (and thus eliminate them) and thereby equate the numerators:

3!n! =30(n-1)!3!n!=30(n1)!

We can rewrite the left side, recognizing that n! =nxx(n-1)!n!=n×(n1)!

3!(nxx(n-1)!)=30(n-1)!3!(n×(n1)!)=30(n1)!

3!n(n-1)! =30(n-1)!3!n(n1)!=30(n1)!

divide through by (n-1)!(n1)!:

3!n =303!n=30

n=30/(3!)n=303!

color(blue)(ul(bar(abs(color(black)(n=30/6=5))))

Let's check this:

(5!)/((5-4)!)=(30(5-1)!)/((3)!((5-1)-3)!)

(5!)/(1!)=(30(4!))/((3)!((4)-3)!)

5! =(30(4!))/((3)!(1!)

5! =(30(4!))/6

5! =5(4!)

5! =5! color(white)(000)color(green)sqrt