How do you solve for x?: e^(-2x)+e^x = 1/3?

1 Answer
Oct 22, 2015

I found: -ln[3(e^-2+1)]=-ln(3)-ln(e^-2+1)

Explanation:

Collect e^x on the left:
e^x(e^-2+1)=1/3 rearrange:
e^x=1/(3(e^-2+1))
apply the ln on both sides:
ln[e^x]=ln[1/(3(e^-2+1))]
so:
x=ln[1/(3(e^-2+1))]
use the properties of log relating sums and subtractions to multiplications and divisions to get:
x=ln(1)-ln[3(e^-2+1)]=0-ln(3)-ln(e^-2+1)