How do you solve for x in 1/3lnx+ln2-ln3=3?

2 Answers
Feb 19, 2015

Hello !

Write \ln(x) = 3\times (3 + \ln(3) - ln(2)) and apply exp function :

x = e^{3\times (3 + \ln(3) - ln(2))} = e^9\times e^{3 ln(3)}\times e^{-3 \ln(2)}. You can simplify :

x = e^9\times 27 \times \frac{1}{8} = \frac{27}{8}e^9,

Remark. I used the rules
1) e^{-x} = \frac{1}{e^x}.
2) n ln(a) = ln(a^n).
3) e^{ln (a)} = a if a >0.

Feb 19, 2015

The answer is: x=27/8e^9.

First of all we have to add a condition otherwise our equation loses meaning: x>0.

Than:

1/3lnx+ln2-ln3=3rArrlnx=3(ln3-ln2+3)rArr

lnx=3(ln3-ln2+lne^3)rArrlnx=3ln(3e^3/2)rArr

lnx=ln(27/8e^9)rArrx=27/8e^9

(That is positive, so it is acceptable).