How do you solve for x? (x-5)(x-6)=25/24^2

2 Answers
Jan 12, 2017

x=11/2+-13/24 i.e. 4.9583 or 6.0417

Explanation:

Let x-6=w and then x-5=w+1. Also let a=5/24 and then the equation (x-5)(x-6)=25/24^2 can be written as

w(w+1)=a^2 or w^2+w-a^2=0

and hence using quadratic formula (-b+-sqrt(b^2-4ac))/(2a)

w=(-1+-sqrt(1+4xx1xxa^2))/2

= -1/2+-sqrt(1+4a^2)/2

As a=5/24,

sqrt(1+4a^2)=sqrt(1+4xx25/24^2)

= sqrt(1+25/12^2)=sqrt((144+25)/12^2)=13/12

and w=-1/2+-13/24

and x=w+6=11/2+-13/24

or x=5.5+-0.5417 i.e. 4.9583 or 6.0417
graph{(x-5)(x-6)-25/24^2 [4.859, 6.109, -0.255, 0.37]}

Jan 12, 2017

x=4 23/24 and 6 1/24

Explanation:

(x-5)(x-6)=25/24^2

Let (x-6)=a;" "then" "(x-5)=a+1

Now the equation becomes

(a+1)a=(24+1)/24^2=1/24(1+1/24)

=>a^2+a-1/24(1+1/24)=0

=>a^2+(1+1/24)a-a/24-1/24(1+1/24)=0

=>a(a+1+1/24)-1/24(a+1+1/24)=0

=>(a+1+1/24)(a-1/24)=0

=>(a+25/24)(a-1/24)=0

So a=-25/24 and a=1/24

Now
when a=-25/24

x=a+6=-25/24+6=4 23/24

Again

when a=1/24

x=a+6=1/24+6=6 1/24