How do you solve \frac { 1} { 4} ( x + 6) = \frac { 1} { 6} ( x + 8)?

1 Answer
Mar 7, 2018

The solution is x=-2.

Explanation:

Multiply both sides by 4 and then 3 to cancel out the fractions. Then, use the distributive property to get like terms and isolate x:

1/4(x+6)=1/6(x+8)

color(blue)(4*)1/4(x+6)=color(blue)(4*)1/6(x+8)

color(red)cancelcolor(black)(color(blue)(4*)1/4)(x+6)=color(blue)(4*)1/6(x+8)

x+6=color(blue)4/6(x+8)

x+6=color(blue)2/3(x+8)

color(blue)(3*)(x+6)=color(blue)(3*)color(blue)2/3(x+8)

color(blue)(3*)(x+6)=color(blue)(color(red)cancelcolor(blue)3*)color(blue)2/color(red)cancelcolor(black)3(x+8)

color(blue)3*(x+6)=color(blue)2*(x+8)

color(blue)3x+color(blue)3*6=color(blue)2x+color(blue)2*8

color(blue)3x+color(blue)18=color(blue)2x+color(blue)16

Now, subtract 2x from both sides, then 18:

3x+18=2x+16

3x+18color(blue)-color(blue)(2x)=2x+16color(blue)-color(blue)(2x)

3xcolor(blue)-color(blue)(2x)+18=2x-color(blue)(2x)+16

x+18=color(red)cancelcolor(black)(2x-color(blue)(2x))+16

x+18=16

x+18color(blue)-color(blue)18=16color(blue)-color(blue)18

xcolor(red)cancelcolor(black)(+18color(blue)-color(blue)18)=16color(blue)-color(blue)18

x=16-18

x=-2