How do you solve ln(2x^2-2)-ln9=ln80?

2 Answers
Aug 18, 2016

The Soln. : x=+-19.

Explanation:

ln(2x^2-2)-ln9=ln80

:. ln(2x^2-2)=ln9+ln80=ln(9*80)

Since, ln fun. is 1-1, we have,

2x^2-2=9*80

rArr 2(x^2-1)=9*80

rArr x^2-1=9*40=360

rArr x^2=361

rArr x=+-sqrt361=+-19

x=+19, and, x=-19 satisfy the given eqn.

Hence, the Soln. x=+-19.

Aug 18, 2016

x = +-19

Explanation:

If the logs are being subtracted, the numbers are being divided.

We can condense two ln terms into one.

ln(2x^2-2) - ln9 =ln80

ln((2x^2-2)/9) = ln 80

:. (2x^2-2)/9 = 80" if "ln(a/b) = ln c rArr a/b = c

2x^2-2 = 720

2x^2= 722

x^2 = 361

x= +-sqrt361

x = +-19