How do you solve ln(2x-3)+ln(x-2) = 2lnx?

2 Answers
Jun 15, 2016

Solution is x=6

Explanation:

ln(2x-3)+in(x-2)=2lnx

or ln(2x-3)(x-2)=lnx^2

or (2x-3)(x-2)=x^2

or 2x^2-4x-3x+6-x^2=0

or x^2-7x+6=0

or x^2-6x-x+6=0

or x(x-6)-1(x-6)=0

or (x-1)(x-6)=0

i.e. x=1 or x=6

But x=1 does not lie in domain as this makes 2x-3 and x-2 both negative, hence

Solution is x=6

Jun 15, 2016

:. x=6.

Explanation:

ln(2x-3)+ln(x-2)=2lnx=lnx^2,... [since mlna=lna^m]
:. ln {(2x-3)(x-2)}=lnx^2,... [as lna+lnb=ln(ab)]
:.ln(2x^2-3x-4x+6)=lnx^2.
:. ln(2x^2-7x+6)=lnx^2.
:. 2x^2-7x+6=x^2....[because ln is 1 to 1 fun.]
:. x^2-7x+6=0.
:. (x-6)(x-1)=0.
:. x=6, x=1.

But x=1 is not permissible, as it makes both ln(x-2) & ln(2x-3) [=ln(-1)] undefined. :. x!=1.

We verify x=6 : LHS=ln(12-3)+ln(6-2)=ln9+ln4=ln(4*9)=ln36=ln6^2=2ln6=RHS.

:. x=6, is the only soln.