Taking ln(5x-4) = ln(2)+ln(x+1)ln(5x−4)=ln(2)+ln(x+1) or equivalently ln(5x-4)-ln(2*(x+1))=0ln(5x−4)−ln(2⋅(x+1))=0 or ln[(5x-4)/(2(x+1))]= ln(1)ln[5x−42(x+1)]=ln(1) then results in (5x-4)/(2(x+1))=15x−42(x+1)=1 or 5x-4=2(x+1)5x−4=2(x+1) and finally x = 2x=2