How do you solve Ln(5x-4)=ln2+ln(x+1)ln(5x4)=ln2+ln(x+1)?

1 Answer
May 13, 2016

x=2x=2

Explanation:

Taking ln(5x-4) = ln(2)+ln(x+1)ln(5x4)=ln(2)+ln(x+1) or equivalently ln(5x-4)-ln(2*(x+1))=0ln(5x4)ln(2(x+1))=0 or ln[(5x-4)/(2(x+1))]= ln(1)ln[5x42(x+1)]=ln(1) then results in
(5x-4)/(2(x+1))=15x42(x+1)=1 or 5x-4=2(x+1)5x4=2(x+1) and finally x = 2x=2