How do you solve Ln(e^3 - x^3) = ln(e^2 - x^2) +1?

1 Answer
Aug 4, 2018

x=0

Explanation:

We know that

(1)lnM-lnN=ln(M/N)

(2)lne=1

Here ,

ln(e^3-x^3)=ln(e^2-x^2)+1

=>ln(e^3-x^3)-ln(e^2-x^2)=1

ln((e^3-x^3)/(e^2-x^2))=lne

=>(e^3-x^3)/(e^2-x^2)=etoApply(1) and (2)

=>((e-x)(e^2+ex+x^2))/((e-x)(e+x))=e

=>((e^2+ex+x^2))/((e+x))=e

=>e^2+ex+x^2=e^2+ex

=>e^2+ex+x^2-e^2-ex=0

=>x^2=0

x=0