How do you solve ln(ex+ex)=ln(103)?

1 Answer
Jul 27, 2016

x=ln31.098,or,x=ln(13)=ln31.098.

Explanation:

ln(ex+ex)=ln(103)

Since, ln is a 11 fun., we get, ex+ex=103

ex+1ex=103=31+13

By inspection, we can say that, ex=3,or,13. But let us proceed mathematically.

ex+1ex=103e2x+1ex=1033e2x+3=10ex

3e2x10ex+3=0

(ex3)(3ex1)=0

ex=3,or,ex=13

x=ln3,or,x=ln(13)

To find ln3,ln(13), we use the Change of Base Rule for Log. to get,

x=ln3=log103log10e=0.47710.43431.098, and,

x=ln(13)=ln1ln3=0ln31.098

: