How do you solve ln(e^x + e^-x) = ln (10/3)?

1 Answer
Jul 27, 2016

x=ln3~=1.098, or, x=ln(1/3)=-ln3~=-1.098.

Explanation:

ln(e^x+e^-x)=ln(10/3)

Since, ln is a 1-1 fun., we get, e^x+e^-x=10/3

rArre^x+1/e^x=10/3=3/1+ 1/3

By inspection, we can say that, e^x=3, or, 1/3. But let us proceed mathematically.

e^x+1/e^x=10/3rArr(e^(2x)+1)/e^x=10/3rArr3e^(2x)+3=10e^x

rArr3e^(2x)-10e^x+3=0

rArr (e^x-3)(3e^x-1)=0

rArre^x=3, or, e^x=1/3

x=ln3, or, x=ln(1/3)

To find ln3, ln(1/3), we use the Change of Base Rule for Log. to get,

x=ln3=log_(10)3/log_(10)e=0.4771/0.4343~=1.098, and,

x=ln(1/3)=ln1-ln3=0-ln3~=-1.098

: