How do you solve ln(x+1) - 1 = ln(x-1)ln(x+1)1=ln(x1)?

1 Answer

x = (e+1)/(e-1)=coth (1/2)=2.164x=e+1e1=coth(12)=2.164, nearly.

Explanation:

Rearranging,

ln (x+1)-ln(x-1)=1=ln eln(x+1)ln(x1)=1=lne.

ln(x+1)/(x-1)=ln eln(x+1)x1=lne

So, (x+1)/(x-1)=ex+1x1=e

x=(e+1)/(e-1)x=e+1e1

=(e^(1/2)(e^(1/2)+e^(-1/2)))/(e^(1/2)(e^(1/2)-e^(-1/2)))=e12(e12+e12)e12(e12e12)

=(e^(1/2)+e^(-1/2))/(e^(1/2)-e^(-1/2))=e12+e12e12e12

=coth (1/2)=coth(12)

(e+1)/(e-1)=2.164e+1e1=2.164, nearly.