How do you solve Ln (x-1) + ln (x+2) = 1 ?

1 Answer
Sep 22, 2016

x=1.729

Explanation:

ln(x-1)+ln(x+2)=1

hArrln(x-1)(x-2)=1 or

(x-1)(x+2)=e or

x^2+x-2-e=0 and using quadratic fomula (-b+-sqrt(b^2-4ac))/(2a)

x=(-1+-sqrt(1^2-4xx1xx(-2-e)))/2

= (-1+-sqrt(1+8+4e))/2

= (-1+-sqrt(9+4e))/2

= (-1+-sqrt(9+4xx2.7183))/2

= (-1+-sqrt(9+10.8732))/2

= (-1+-sqrt(19.8732))/2

= (-1+-4.4579)/2

i.e. x=1.729 or x=-2.729

But x cannot have a negative value, hence x=-2.729