How do you solve ln(x+1)-lnx=5ln(x+1)lnx=5?

2 Answers
Jun 9, 2017

See below.

Explanation:

When we subtract two natural logs (or two logs in general), we divide the expressions on the inside.

ln(x+1)-lnx=5ln(x+1)lnx=5

ln((x+1)/x)=5ln(x+1x)=5

e^5=(x+1)/xe5=x+1x

xe^5=x+1xe5=x+1

xe^5-x=1xe5x=1

x(e^5-1)=1x(e51)=1

x=1/(e^5-1)x=1e51

Jun 9, 2017

I got: x=1/(e^5-1)=0.006783x=1e51=0.006783

Explanation:

We can use a property of logs:

logx-logy=log(x/y)logxlogy=log(xy)

and write:

ln((x+1)/x)=5ln(x+1x)=5

use the definition of (natural) log:

(x+1)/x=e^5x+1x=e5

rearrange:

x+1=xe^5x+1=xe5

x(e^5-1)=1x(e51)=1

x=1/(e^5-1)=0.006783x=1e51=0.006783