How do you solve (ln x)^2=ln x^2?

1 Answer
Jun 23, 2016

x=1color(white)("XXX")orcolor(white)("XXX")x=e^2

Explanation:

Remember: ln(x^2)=2ln(x)

Let k=ln(x)

Therefore
color(white)("XXX")(ln(x))^2=ln(x^2)
is equivalent to
color(white)("XXX")k^2=2k

color(white)("XXX")k^2-2k=0

color(white)("XXX")k(k-2)=0

color(white)("XXX"){: (k=0,color(white)("XX")orcolor(white)("XX"),k=2), (rarr ln(x)=0,,rarr ln(x)=2), (rarr e^0=x,,rarr e^2=x), (rarr x=1,,rarr x=e^2) :}