How do you solve ln x - ln(x-1) = 2lnxln(x1)=2?

1 Answer
Apr 4, 2018

x=e^2/(e^2-1)x=e2e21

Explanation:

First note that

lnx-ln(x-1)=ln(x/(x-1))lnxln(x1)=ln(xx1)

So for your problem we can write

ln(x/(x-1))=2ln(xx1)=2.

Now take the exponential of both sides

x/(x-1)=e^2xx1=e2

(Another way to think of this is if lna=blna=b, then a=e^ba=eb.)

x=xe^2-e^2x=xe2e2

x=e^2/(e^2-1)=1/(1-1/e^2)x=e2e21=111e2