How do you solve ln x + ln (x-2) = 1?
1 Answer
Explanation:
Assuming we are looking for Real solutions, we want to find Real values of
1 = ln(x) + ln(x-2) = ln(x(x-2)) = ln(x^2-2x)
Applying the exponential fundtion to both sides, we have:
e = e^1 = e^(ln(x^2-2x)) = x^2-2x
Subtracting
0 = x^2-2x-e
= (x^2-2x+1)-(e+1)
= (x-1)^2-(sqrt(e+1))^2
= ((x-1)-sqrt(e+1))((x-1)+sqrt(e+1))
= (x-(1+sqrt(e+1)))(x-(1-sqrt(e+1)))
So
Note that
-
x = 1-sqrt(1+e) < 0 making the arguments toln in the original equation negative, so having no Real value. -
x = 1+sqrt(1+e) > 2 yielding Real values for the natural logarithms in the original equation.
So
Footnote
Note that
In general:
ln(z) = ln abs(z) + Arg(z)i
So in the case of Real negative values of
ln(z) = ln abs(z) + pii
In particular:
ln(1-sqrt(1+e))+ln(1-sqrt(1+e)-2)
=ln(sqrt(1+e)-1) + pii + ln(sqrt(1+e)+1) + pii
=ln((sqrt(1+e)-1)(sqrt(1+e)+1)) + 2pii
=ln(e) + 2pii
=1 + 2pii != 1