How do you solve ln x + ln (x+3) = 1?

1 Answer
Nov 16, 2016

Combine the left into one term using the rule ln(ab)=lna+lnb

lnx+ln(x+3)=1
ln[(x)(x+3)]=1
ln(x^2+3x)=1

Rewrite using the definition of log:
e^1=x^2+3x
e=x^2+3x

Now solve as a quadratic; first set one side equal to zero:
0=x^2+3x-e

Use quadratic formula:
x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(3)+-sqrt(3^2-4(1)(e)))/(2(1))
x=(-3+-sqrt(9-4e))/2

xapprox(-3+-sqrt(-1.87))/2

Because we take the square root of a negative number, there are no solutions to the equation.