How do you solve lnx + ln (x-2) = 1?

1 Answer
Jul 28, 2016

I found: x=1+sqrt(1+e)

Explanation:

We can change the sum of logs into a product of arguments as:
ln[x(x-2)]=1
We then use the definition of log to get:
x(x-2)=e^1
Rearranging:
x^2-2x-e=0
Use the Quadratic Formula:
x_(1,2)=(2+-sqrt(4+4e))/2=(2+-sqrt(4(1+e)))/2=
=(2+-2sqrt(1+e))/2=(2(1+-sqrt(1+e)))/2=1+-sqrt(1+e)
So:
x_1=1+sqrt(1+e)
x_2=1-sqrt(1+e) NO, because negative.