How do you solve lnx-ln3=2lnxln3=2?

1 Answer

x=3*e^2x=3e2

Explanation:

from the given: ln x-ln 3=2lnxln3=2

ln (x/3)=2ln(x3)=2

also this means

ln_e (x/3)=2lne(x3)=2

taking the exponential form

e^2=x/3e2=x3

3*e^2=3*x/33e2=3x3 multiplying both sides by 3

3*e^2=cancel3*x/cancel3

3*e^2=x

and

color (red)(x=3*e^2)

Check: at x=3*e^2 using the original equation

ln x-ln 3=2

ln 3*e^2-ln 3=2

ln ((3*e^2)/3)=2

ln (e^2)=2

2=2