How do you solve log_6 (x+ 1)+ log_6 (x-4)= 1 log6(x+1)+log6(x−4)=1?
1 Answer
Jul 30, 2016
Explanation:
Given:
log_6(x+1)+log_6(x-4) = 1log6(x+1)+log6(x−4)=1
We require:
6 = 6^1 = 6^(log_6(x+1)+log_6(x-4)) = (x+1)(x-4) = x^2-3x-46=61=6log6(x+1)+log6(x−4)=(x+1)(x−4)=x2−3x−4
Subtract
0 = x^2-3x-10 = (x-5)(x+2)0=x2−3x−10=(x−5)(x+2)
So
If
log_6(x+1)+log_6(x-4) = log_6(6)+log_6(1) = 1+0 = 1log6(x+1)+log6(x−4)=log6(6)+log6(1)=1+0=1
So
If
log_6(x+1)+log_6(x-4)log6(x+1)+log6(x−4)
= log_6(-1)+log_6(-6)=log6(−1)+log6(−6)
= log_6(1)+(pi i)/ln(6) + log_6(6)+(pi i)/ln(6)=log6(1)+πiln(6)+log6(6)+πiln(6)
= 1+(2pi i)/ln(6) != 1=1+2πiln(6)≠1
So