How do you solve log_6 (x+ 1)+ log_6 (x-4)= 1 log6(x+1)+log6(x4)=1?

1 Answer
Jul 30, 2016

x=5x=5

Explanation:

Given:

log_6(x+1)+log_6(x-4) = 1log6(x+1)+log6(x4)=1

We require:

6 = 6^1 = 6^(log_6(x+1)+log_6(x-4)) = (x+1)(x-4) = x^2-3x-46=61=6log6(x+1)+log6(x4)=(x+1)(x4)=x23x4

Subtract 66 from both ends to get:

0 = x^2-3x-10 = (x-5)(x+2)0=x23x10=(x5)(x+2)

So x=5x=5 or x=-2x=2

If x=5x=5 then:

log_6(x+1)+log_6(x-4) = log_6(6)+log_6(1) = 1+0 = 1log6(x+1)+log6(x4)=log6(6)+log6(1)=1+0=1

So x=5x=5 is a solution of the original equation.

If x=-2x=2 then (even if we allow Complex logarithms):

log_6(x+1)+log_6(x-4)log6(x+1)+log6(x4)

= log_6(-1)+log_6(-6)=log6(1)+log6(6)

= log_6(1)+(pi i)/ln(6) + log_6(6)+(pi i)/ln(6)=log6(1)+πiln(6)+log6(6)+πiln(6)

= 1+(2pi i)/ln(6) != 1=1+2πiln(6)1

So x=-2x=2 is not a solution of the original equation.