How do you solve m^2+ 2m - 24 = 0m2+2m24=0?

1 Answer
Apr 17, 2016

The solutions are:

m = 4m=4
m= -6m=6

Explanation:

m^2 + 2m - 24 = 0m2+2m24=0

The equation is of the form color(blue)(am^2+bm+c=0am2+bm+c=0 where:

a=1, b=2, c= - 24a=1,b=2,c=24

The Discriminant is given by:

Delta=b^2-4*a*c

= (2)^2-(4 * 1 * (-24))

= 4 + 96 = 100

The solutions are found using the formula:

m=(-b+-sqrtDelta)/(2*a)

m= ((-2)+-sqrt(100))/(2*1) = ((-2+-10))/2

m= ( -2 +10) /2 = 8/2 = 4

m= ( -2 - 10) /2 = -12/2 = -6