How do you solve # sec(2x + pi/3) = 2/sqrt(3)#?

1 Answer
Apr 30, 2016

#-pi/12 and -pi/4#

Explanation:

Transform the equation to variable cos (2x + pi/3):
#1/(cos ((2x + pi)/3)) = 2/sqrt3#. Cross mulyiply:
#2cos (2x + pi/3) = sqrt3#
#cos (2x + pi/3) = sqrt3/2 #
Trig table and unit circle -->
#2x + pi/3 = +- pi/6#
a. #2x + pi/3 = pi/6 --> 2x = pi/6 - pi/3 = - pi/6 --> x = - pi/12#
b. #2x + pi/3 = -pi/6 -> 2x = - pi/6 - pi/3 = - pi/2 --> x = -pi/4#