How do you solve sin 2x=sinx over the interval 0 to 2pi?

1 Answer
Mar 2, 2016

Solution is x={0, pi/3, pi, (5pi)/3, 2pi}

Explanation:

As sin2x=2sinxcosx,

sin2x=sinx is equivalent to

2sinxcosx=sinx or 2sinxcosx-sinx=0 or

sinx(2cosx-1)=0 i.e.

either sinx=0 and x=0, pi, 2pi

or 2cosx-1=0 i.e. cosx=1/2 i.e. x=pi/3, (5pi)/3

Hence, Solution is x={0, pi/3, pi, (5pi)/3, 2pi}