How do you solve Sin (x) = cos (2x) over the interval 0 to 2pi?

1 Answer
Mar 24, 2016

pi/6, (5pi)/6, (3pi)/2

Explanation:

cos 2x = 1 - 2sin^2 x. The equation becomes:
2sin^2 x + sin x - 1 = 0. Solve this quadratic equation for sin x.
Since a - b + c = 0, use shortcut. The 2 real roots are: sin x = - 1 and sin x = -c/a = 1/2.
a. sin x = -1 --> x = (3pi)/2
b. sin x = 1/2.
Trig unit circle --> There are 2 arcs x that have same sin value (1/2) -->
x = pi/6 and x = pi - pi/6 = (5pi)/6
For interval (0, 2pi), there are 3 ansawers:
pi/6, (5pi)/6, (3pi)/2