How do you solve sin2x-cosx=0 over the interval 0 to 2pi?

1 Answer
May 9, 2016

x=pi/6,pi/2,(5pi)/6,(3pi)/2

Explanation:

Use the identity sin2x=2sinxcosx.

2sinxcosx-cosx=0

Factor a cosx term on the left hand side.

cosx(2sinx-1)=0

Set both of these terms equal to 0.

cosx=0" "=>" "x=pi/2,(3pi)/2

2sinx-1=0" "=>" "sinx=1/2" "=>" "x=pi/6,(5pi)/6