How do you solve t^2 + 5t - 24 = 0 t2+5t24=0?

1 Answer
Mar 26, 2016

x=3,-8x=3,8

Explanation:

color(blue)(t^2+5t-24=0t2+5t24=0

This is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)

Use Quadratic formula

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Where

color(red)(a=1,b=5,c=-24a=1,b=5,c=24

rarrx=(-5+-sqrt(5^2-4(1)(-24)))/(2(1))x=5±524(1)(24)2(1)

rarrx=(-5+-sqrt(25-(-96)))/(2)x=5±25(96)2

rarrx=(-5+-sqrt(25+96))/(2)x=5±25+962

rarrx=(-5+-sqrt(121))/(2)x=5±1212

rarrx=(-5+-11)/(2)x=5±112

Now we have 22 solutions

color(purple)(x=(-5+11)/(2)=6/2=3x=5+112=62=3

color(indigo)(x=(-5-11)/(2)=-16/2=-8x=5112=162=8

:. color(blue)( ul bar |x=3,-8|