How do you solve tan(arccos((sqrt2)/2))?

2 Answers
Jul 18, 2016

Ans.=1.

Explanation:

Recall that arccosx=theta, |x|<=1 iff costheta=x, theta in [o,pi]

Hence, arccos(sqrt2/2)=pi/4, and, so,

tan{arccos(sqrt2/2)}=tan(pi/4)=1.

Jul 18, 2016

tan[arccos(sqrt(2)/2)] =1

Explanation:

arccos((sqrt(2))/2) returns the angle theta where we have:

Tony BTony B

cos(theta)=("adjacent")/("hypotenuse") =sqrt(2)/2
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
But we need the tangent and this means we need to know the length of the opposite (h).

=>h=sqrt(2^2-2)=sqrt(2)

So tan[arccos(sqrt(2)/2)] ->tan(theta) = h/sqrt(2)=sqrt(2)/sqrt(2) = 1