How do you solve the differential equation dy/dx=6y^2xdydx=6y2x, where y(1)=1/25y(1)=125 ?

1 Answer
Apr 26, 2018

=> y = 1/(28-3x^2)y=1283x2

Explanation:

We are given:

dy/dx = 6y^2xdydx=6y2x

Separate the variables:

1/y^2 dy = 6x dx1y2dy=6xdx

Integrate both sides:

int 1/y^2 dy = int 6x dx1y2dy=6xdx

-1/y = 3x^2 + C1y=3x2+C

1/y = -3x^2+C1y=3x2+C

y = -1/(3x^2 + C)y=13x2+C

where CC is an arbitrary constant of integration.

Now solve for y(1)y(1) to find CC:

y(1) = 1/25 = -1/(3(1)^2+C)y(1)=125=13(1)2+C

-1/25 = 1/(3+C)125=13+C

3+C = -253+C=25

C = -28C=28

Hence, the final solution is:

y = -1/(3x^2-28)y=13x228

=> y = 1/(28-3x^2)y=1283x2