(2(x+3)^2)/3-4/9=1/32(x+3)23−49=13
=>(2(x+3)^2)/3=1/3+4/9⇒2(x+3)23=13+49
=>(2(x+3)^2)/3=1/3 xx3/3+4/9⇒2(x+3)23=13×33+49
=>(2(x+3)^2)/3=3/9+4/9⇒2(x+3)23=39+49
=>2/3xx(x+3)^2=7/9⇒23×(x+3)2=79
=>(x+3)^2=7/9xx 3/2⇒(x+3)2=79×32
=>(x+3)^2=7/cancel9^3xx cancel3^1/2
=>x^2 + 6x + 9 = 7/6
=>x^2 + 6x + 9 - 7/6 = 0
=>x^2 + 6x + (9xx6)/6 - 7/6 = 0
=>x^2 + 6x + (54 - 7)/6 = 0
x^2 + 6x + 47/6 = 0
6x^2 + 36x + 47 = 0
Using quadratic formula :
x=( -b +-sqrt(b^2 -4ac))/(2a)
Where a=6, b=36 and c =47
We get the truncated approximate values of x as
x = -4.0801
Or
x= -1.9198