How do you solve the equation #6x^2-5x-13=x^2-11# by completing the square?
1 Answer
Aug 20, 2017
#x=sqrt(13/20)+1/2#
#x=-sqrt(13/20)+1/2#
Explanation:
Given -
#6x^2-5x-13=x^2-11#
Take all the terms to the left-hand side
#6x^2-5x-13-x^2+11=0#
Simplify it.
#5x^2-5x-2=0#
Take the constant term to the right-hand side
#5x^2-5x=2#
Divide all the terms by the coefficient of
#(5x^2)/5-(5x)/5=2/5#
#x^2-x=2/5#
Take half the coefficient of
#x^2-x+1/4=2/5+1/4=(8+5)/20=13/20#
#(x-1/2)^2=13/20#
#(x-1/2)=+-sqrt(13/20)#
#x=sqrt(13/20)+1/2#
#x=-sqrt(13/20)+1/2#