How do you solve the equation abs(2x-1)=x+1|2x1|=x+1?

1 Answer
Aug 15, 2017

See below.

Explanation:

abs(2x-1)=x-1/2+3/2 = 1/2(2x-1)+3/2|2x1|=x12+32=12(2x1)+32

now assuming 2x-1 ne 02x10 we have

abs(2x-1)/(2x-1) = 1/2+3/2 1/(2x-1)|2x1|2x1=12+3212x1 so

2abs(2x-1)/(2x-1) = 1+3/(2x-1)2|2x1|2x1=1+32x1

but abs(2x-1)/(2x-1) = pm 1|2x1|2x1=±1 so we have two options

{(-2=1+3/(2x-1)->-3=3/(2x-1)->2x-1=-1 -> x = 0),(2=1+3/(2x-1)->1=3/(2x-1)->2x-1=3->x=2):}

so the solutions are

x = {0, 2}