How do you solve the equation: x^2 + 7x - 3 = 0x2+7x3=0?

1 Answer
Jul 6, 2015

The solutions are:
x = color(blue)( (-7+sqrt(61))/(2 x=7+612

x =color(blue)( (-7-sqrt(61))/(2x=7612

Explanation:

x^2+7x-3=0x2+7x3=0

The equation is of the form color(blue)(ax^2+bx+c=0ax2+bx+c=0 where:
a=1, b=7, c=-3a=1,b=7,c=3

The Discriminant is given by:
Delta=b^2-4*a*c

= (7)^2-(4*(1)*(-3)

= 49 +12=61

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = ((-7)+-sqrt(61))/(2*1) = ((-7)+-sqrt(61))/(2
The solutions are:
x = color(blue)( (-7+sqrt(61))/(2

x =color(blue)( (-7-sqrt(61))/(2