How do you solve the inequality #x^3-x^2-6x>0#?

1 Answer
Feb 15, 2015

Factor the expression #x^3 - x^2 - 6x# on the left side of the inequality and then evaluate for each term:

#x^3 - x^2 - 6x > 0#
#rarr# #(x) (x-3) (x+2) > 0#

Note that #x != 0# since the left side must be #> 0#

If #x >0#
then #(x-3) (x+2) > 0#
#rarr# #x > 3#

if #x < 0#
then #(x-3)# will be negative
#rarr# #(x+2)# must be #>0#
(so the product #(x) (x-3)_neg (x+2)# will be #> 0#
i.e (neg) #xx# (neg) #xx# (pos) )
#rarr# # (-2) < x < 0

Therefore
#x^3 - x^2 - 6x > 0#
for #x > 3# or #(-2) < x < 0#

enter image source here