How do you solve these logarithmic equations?

4+log_(9)(3x-7)=6
log_(2)(2x)+log_(2)x=5
3log_(5)x-log_(5)(5x)=3-log_(5)25

2 Answers
Nov 25, 2016

See below.

Explanation:

Before the logarithm application, the equations read

9^4(3x-7)=9^6
(2x)x=2^5
x^3/(5x)=5^3/25

after that we have

3x-7=9^2->x=(9^2+7)/3
x^2=2^4->x=pm2^2
x^2=5^2->x=pm 5

Nov 25, 2016

4+log_9(3x-7)=6

log_9(3x-7)=2

3x-7=81

3x=89

x=89/3

log_2(2x)+log_2(x)=5

log_2(2x^2)=5

2x^2=2^5=32

x^2=16

x=+-4

3log_(5)x-log_(5)(5x)=3-log_(5)25

log_5x^3-log_5(5x)=3-2=1

log_5(x^3/(5x))=log_5(x^2/5)=1

x^2/5=5

x^2=25

x=+-5