How do you solve x^2 - 12x + 80 = 8?

2 Answers
Aug 14, 2015

x= 6+-6i
color(white)"XXXX"(there are no Real solution values)

Explanation:

Given x^2-12x+80 = 8

Subtracting 8 from both sides
color(white)"XXXX"x^2-12x+72=0

Using the quadratic formula (see below if you are uncertain of this)
color(white)"XXXX"x= (-(-12)+-sqrt((-12)^2-4(1)(72)))/(2(1)

color(white)"XXXXXXXX"=(12 +-sqrt(144 - 288)/2

color(white)"XXXXXXXX"= (12+-sqrt(-144))/2

color(white)"XXXXXXXX"= (12+-12i)/2

color(white)"XXXXXXXX"=6+-6i

Quadratic formula
Given the general quadratic equation in the form:
color(white)"XXXX"ax^2+bx+c=0
the solutions are given by the quadratic formula:
color(white)"XXXX"x = (-b+-sqrt(b^2-4ac))/(2a)

color(white)"XXXXXX"The need to use this formula comes up often enough that it is worth memorizing

Aug 14, 2015

color(blue)(x=6(1+i)
color(blue)( x=6(1-i)

Explanation:

x^2−12x+80=8
x^2−12x+80 -8=0

x^2−12x+72=0 .

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=1, b=-12, c=72

The Discriminant is given by:
Delta=b^2-4*a*c

= (-12)^2-(4*1*72)
= 144-288=-144

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-12)+-sqrt(-144))/(2*1) = (12+-sqrt(-144))/2

x=(12+-12i)/2

= (2(6+-6i))/2

= 6+-6i

color(blue)(x=6(1+i)
color(blue)( x=6(1-i)