How do you solve #x^2 + 24x + 90 = 0#?
1 Answer
Mar 28, 2016
Complete the square to find:
#x = -12+-3sqrt(6)#
Explanation:
This can be solved by completing the square.
Also use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#0 = x^2+24x+90#
#= (x+12)^2-144+90#
#= (x+12)^2-54#
#= (x+12)^2-(3^2*6)#
#= (x+12)^2-(3sqrt(6))^2#
#= ((x+12)-3sqrt(6))((x+12)+3sqrt(6))#
#= (x+12-3sqrt(6))(x+12+3sqrt(6))#
Hence:
#x = -12+-3sqrt(6)#