How do you solve #x^2 - 3x = 18# by completing the square?
2 Answers
Explanation:
#"add "(1/2"coefficient of the x-term")^2" to both sides"#
#x^2+2(-3/2)x color(red)(+9/4)=18color(red)(+9/4)#
#(x-3/2)^2=81/4#
#color(blue)"take the square root of both sides"#
#sqrt((x-3/2)^2)=+-sqrt(81/4)larrcolor(blue)"note plus or minus"#
#x-3/2=+-9/2#
#"add "3/2" to both sides"#
#x=3/2+-9/2#
#x=3/2-9/2=-3" or "x=3/2+9/2=6#
Explanation:
Here ,
#x^2-3x=18#
We have to find
forms a perfect square ,where
#color(blue)(1^(st)term=x^2# ,
#color(blue)(2^(nd)term=-3x#
#color(blue)(3^(rd)term=k#
Formula to find
#color(red)(3^(rd)term=(2^(nd)term)^2/(4 xx1^(st)term))...to(A)#
So,
#k=(-3x)^2/(4*x^2)=(9x^2)/(4x^2)=9/4#
Subst.
......................................................................................
Note:
We can use Formula