How do you solve x^2 - 3x = 40?

1 Answer
Feb 16, 2016

x=8,-5

Explanation:

color(blue)(x^2-3x=40

Subtract 40 both sides

We get:

color(red)(x^2-3x-40=0

You can solve this both by Factoring and using the Quadratic formula:

1) First we can solve it by factoring:

color(red)(x^2-3x-40=0

Factor x^2-3x-40

We get

rarr(x-8)(x+5)=0

If you solve it you get

rArrcolor(green)(x=8,-5

2) Quadratic formula

color(red)(x^2-3x-40=0

This is a Quadratic equation (in form ax^2+bx+c=0)

So use Quadratic formula:

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)

In this case a=1,b=-3,c=-40

Substitute the values into the equation:

rarrx=(-(-3)+-sqrt(-3^2-4(1)(-40)))/(2(1))

rarrx=(3+-sqrt(9-(-160)))/(2)

rarrx=(3+-sqrt(9+160))/(2)

rarrx=(3+-sqrt(169))/(2)

rArrx=color(indigo)(3+-13)/2

Now we have two solutions:

x=color(orange)((3+13)/2),color(violet)((3-13)/2

Solve for the first and then into the second:

rarrx=color(orange)((3+13)/2

rArrcolor(green)(x=16/2=8

For the second

rarrcolor(violet)(x=(3-13)/2

rArrcolor(green)(x=-10/2=-5