How do you solve x^2 - 3x = 40?
1 Answer
Explanation:
color(blue)(x^2-3x=40
Subtract
We get:
color(red)(x^2-3x-40=0
You can solve this both by Factoring and using the Quadratic formula:
1) First we can solve it by factoring:
color(red)(x^2-3x-40=0
Factor
We get
rarr(x-8)(x+5)=0
If you solve it you get
rArrcolor(green)(x=8,-5
2) Quadratic formula
color(red)(x^2-3x-40=0
This is a Quadratic equation (in form
So use Quadratic formula:
color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)
In this case
Substitute the values into the equation:
rarrx=(-(-3)+-sqrt(-3^2-4(1)(-40)))/(2(1))
rarrx=(3+-sqrt(9-(-160)))/(2)
rarrx=(3+-sqrt(9+160))/(2)
rarrx=(3+-sqrt(169))/(2)
rArrx=color(indigo)(3+-13)/2
Now we have two solutions:
x=color(orange)((3+13)/2),color(violet)((3-13)/2
Solve for the first and then into the second:
rarrx=color(orange)((3+13)/2
rArrcolor(green)(x=16/2=8
For the second
rarrcolor(violet)(x=(3-13)/2
rArrcolor(green)(x=-10/2=-5