How do you solve #x^2 - 3x = 40#?
1 Answer
Explanation:
#color(blue)(x^2-3x=40#
Subtract
We get:
#color(red)(x^2-3x-40=0#
You can solve this both by Factoring and using the Quadratic formula:
#1)# First we can solve it by factoring:
#color(red)(x^2-3x-40=0#
Factor
We get
#rarr(x-8)(x+5)=0#
If you solve it you get
#rArrcolor(green)(x=8,-5#
#2)# Quadratic formula
#color(red)(x^2-3x-40=0#
This is a Quadratic equation (in form
So use Quadratic formula:
#color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)#
In this case
Substitute the values into the equation:
#rarrx=(-(-3)+-sqrt(-3^2-4(1)(-40)))/(2(1))#
#rarrx=(3+-sqrt(9-(-160)))/(2)#
#rarrx=(3+-sqrt(9+160))/(2)#
#rarrx=(3+-sqrt(169))/(2)#
#rArrx=color(indigo)(3+-13)/2#
Now we have two solutions:
#x=color(orange)((3+13)/2),color(violet)((3-13)/2#
Solve for the first and then into the second:
#rarrx=color(orange)((3+13)/2#
#rArrcolor(green)(x=16/2=8#
For the second
#rarrcolor(violet)(x=(3-13)/2#
#rArrcolor(green)(x=-10/2=-5#